Specs 101


World Champion Archery Levi Morgan, Dominant Buck’s Stan Potts and In Pursuit’s Greg Miller define the basics of archery

When it comes to purchasing a new Mathews bow, many aspects must be considered in order to ensure the buyer makes the perfect selection. Because all shooters are different, both physically and with regards to the skills they possess, it is important to understand that choosing the right bow requires a little more forethought than one might expect. However, once the buyer understands a few basic terms and how each will affect their ability to accurately shoot a bow, making the right decision will become a much easier task.

Whether you are new to the sport of archery/bowhunting, or you are simply looking to upgrade to a new bow model, consider the following characteristics when consulting your Authorized Mathews Retailer. This will guarantee that the bow you choose meshes perfectly with your style of shooting and/or hunting; making you more accurate on the range and deadlier in the field.

Brace Height

The term “brace height” refers to the distance between the throat of the bow grip and the string. Brace height is important for many reasons. First, the shorter the brace-height, the faster the IBO speed rating will be. This is simply due to an increase in the bows power-stroke. In other words, the arrow remains on the string for a longer period of time because the string must travel a longer distance (closer to the grip) before the arrow actually separates from it. This results in more energy being transferred to the arrow, which equals more speed. Furthermore, high arrow speeds can provide the shooter with a measure of “range-estimation” forgiveness when the distance to the target is unknown or misjudged.

In contrast, a bow with a long brace-height (string further away from grip) would have a slower IBO speed rating because the arrow would travel a shorter distance before leaving the string. This would allow less of the bows energy to be transferred to the arrow. Therefore, errors in range estimation become more critical with a bow possessing a slower IBO speed rating.

Brace-height should also be considered when it comes to the “forgiveness” of a particular bow. Shorter brace-heights typically result in a “less” forgiving bow. This is thought to be a result of the time that the arrow is actually on the string. Because the arrow is on the string longer, there is more of an opportunity for the shooter to mess up the shot via hand torque. On the other hand, longer brace-height bows are typically more forgiving because the arrow leaves the string sooner, providing less time for the shooter to poorly affect up the shot.

Physical Weight

This is the actual weight of the bow.  Bowhunters who typically hunt in demanding terrain will often favor a lightweight setup such as the all the new Mathews Creed- weighing in at a remarkable 3.85 lbs. or the Mathews Jewel or Hēlim. Such bows make long hikes over tough terrain much easier as the hunter experiences less fatigue. This can be a real asset over the course of a long backcountry hunt.

However, when it comes to the physical weight of a bow, some shooters prefer a heavier setup. This is typically due to the increased stability that a heavy bow provides. In simplest terms, a heavier bow will resist hand-torque much better than a lightweight setup because of the added resistance that the increased weight provides. Therefore, it is important for the shooter/buyer to consider the overall weight of the bow and how it will affect their success in the field or on the range before making a purchase. Also, please note that the listed weight of a Mathews bow is typically without accessories.

Axle to Axle Length

This is the length of your bow as measured from the axle of the top idler wheel to the axle of the lower cam.  When it comes to applying these dimensions to target shooting or hunting it is important to consider how and where the bow will be used.
Shorter axle to axle bows can be advantageous when hunting from a ground blind or tight quarters in a treestand. On the other hand, longer axle to axle bows provide more stability; especially when shooting at longer, open-range distances.

Despite all of this, in recent years Mathews has produced extremely accurate, yet short, axle to axle (ATA) bows. This is primarily due to shorter limbs that are connected to a longer riser. Even though the ATA length may be short, the longer length of the riser causes the bow to shoot as though it had a longer ATA measurement. This technology has allowed shooters to experience the best of both worlds; a short, highly maneuverable bow that shoots accurately at extended distances; much like a longer bow.

In the end, where you hunt, and how far you expect to shoot should ultimately determine what your axle-to-axle needs are. Typically, taller shooters will feel more comfortable with a slightly longer bow. However, this isn’t always the case as all shooters are different. The best advice is to test shoot as many models in the Mathews lineup as possible before making a decision.

Let- Off

The term “let-off” basically refers to the percentage of weight that is subtracted from the bows advertised draw weight. In other words, a bow set at 70lbs, with 80% let-off, will only require that the shooter hold back 14lbs of weight when the bow is at full draw.

In most hunting situations, high let-off can be a real asset. For instance, high let-off allows the hunter to draw the bow early and wait while the target animal moves into position with less concern as to whether or not they can hold the bow back long enough to allow the shot to materialize. Less holding weight means you can hold the bow at full draw for a much longer period of time.

When it comes to target shooting, many archers prefer a bow with a lower let-off; typically in the 65% range. This provides the shooter with more “tension”, or resistance, to pull against while using a back-tension release; which is very popular with top-level target shooters.

IBO Speed Rating

The IBO speed rating for a bow is reached by shooting a 350 grain arrow at 70lbs of draw weight and 30 inches of draw length. This is important to remember because unless you are shooting the same specs used to attain IBO speed ratings, your bow of choice will not shoot as quickly as you might think.

For instance, many shooters make the mistake of choosing a bow with a particular speed rating and then shoot a draw length that is less than 30 inches, a draw weight that is less than 70lbs, and a hunting arrow that typically weighs more than 350 grains; while at the same time still expecting the bow to reach the advertised IBO speed rating.

Like everything else associated with archery, there are pros and cons to speed. It is very important to understand that high arrow speeds do not come without some degree of sacrifice. However, Mathews has continued to push the envelope in bow design in an effort to minimize this harsh reality. As a result, they continue to produce bows that attain high arrow speeds while maintaining the smoothness, accuracy, and overall “shoot-ability” of the bow.

For example, the new Creed launches arrows at an amazing 328 fps (feet per second) and the new Chill at 333 fps, while still providing the shooter with a very comfortable and very forgiving 7 inch brace-height and 80% let-off! These numbers were basically unheard of in years passed. But with today’s technology and Mathews engineering, what was once thought unreachable in the archery world is easily within grasp.

When it comes to all-out speed, it is no secret that dual-cam bows are faster than single cam bows. However, the shooter must understand that when it comes to most hunting situations, the single-cam bow design offers many advantages over the dual-cam. For instance, single-cam bows require less maintenance, are typically more forgiving, and produce less recoil and less vibration than bows incorporating dual cams.

For shooters still seeking a blazing-fast, dual-cam setup that is also “shootable”, the Mathews McPherson series of bows, with the new proprietary AVS cam system, is more advanced than any other cam system. This highly innovative dual cam can launch arrows up to 360+ FPS all at 80% let off!

Draw Length

In order to reach your full potential as a shooter and a bowhunter it is important to be relaxed and comfortable when executing the shot.  To achieve this situation, the bow must fit you properly; i.e. the draw length must be correct.  There are a few methods for selecting your proper draw length, but perhaps the easiest way is to use the “wingspan” method.
The Wingspan Method suggests that you simply stand with your back against a wall, arms spread out, while a friend measures from your middle fingertip (on one hand) to the middle fingertip on the other.  Next, take that measurement and divide it by 2.5.  This will give you an excellent starting point for finding your proper draw length.  However, variations in D-Loop length and axle to axle bow length may require some small lengthening or shortening of your final draw length measurement.

For example, if your wingspan measurement is 70, divided by 2.5, then your draw length will be in the neighborhood of 28 inches.  But, when you add a D-Loop to the string, you will essentially be altering (lengthening) this measurement by as much as ¼ of an inch. If the addition of a D-Loop causes your form to deteriorate, then the bows draw length may need to be shortened just a bit in order to bring you back to your initial measurement before the loop was added.

You can also experiment with the length of your release-aids connection strap while at full-draw until a comfortable location is established. Overall, you want to be relaxed while shooting and be consistent in your anchor point….both of which start with choosing the proper draw length.

Draw Weight

This is simply the minimum and maximum amount of weight required to bring the bow to full draw. Typically, this weight range is 10 pounds. For instance, a bow with a 60 pound peak draw weight will have a minimum of 50 pounds. Likewise, a 70 pound draw will carry a minimum draw-weight of 60 lbs. Overall draw weight can be increased or reduced (within this 10 pound range) by simply tightening or loosening the limb-bolts on each limb. This allows the shooter to customize his/her bow to the perfect draw weight.

Single Cam / Dual Cam Systems

When you compare the single cam bow system to that of the dual cam, perhaps the most noticeable difference is that of “simplicity”. This was the driving force behind founder Matt McPherson’s dream to “make something function better while also making it simpler”. In 1992, Mr. McPherson made that dream a reality with the invention of the single-cam bow and forever changed the landscape of archery.

Instead of two cams fighting one another for control (typical of two cam designs), the single cam system utilized an idler wheel on the top limb and a single-cam on the bottom; no more fighting. Suddenly, all of the timing and synchronization issues that frustrated shooters for years were gone.

Early on, the most obvious advantage to shooting a dual-cam bow was speed. However, with the continued advancements in Mathews technology, the single-cam bow is capable of attaining amazingly high arrow speeds (340 fps with the Z7 Magnum), while at the same time, offering a host of other advantages over typical 1 ½ cam and dual cam systems.

For instance, the single-cam has proven to be more efficient than any other compound bow system available. With the highest efficiencies numbers ever documented from an 80% let-off bow (Mathews Reezen), the single-cam obviously transfers more of the bows stored energy where it matters most…..the arrow. In addition, the single-cam system provides a solid back wall, generates less recoil and vibration, and produces very little game-spooking noise. Also, the single-cam has shown to be more reliable (requiring less maintenance) because the synchronization problems typically found on a dual-cam system have been eliminated. All of this adds up to the most accurate cam system ever developed.

Despite the inherent advantages of the single-cam system, some archers simply want to shoot the fastest arrow possible. And, while the dual-cam system can certainly fill this niche, many versions do so at the cost of the aforementioned problems. However, in 2009 Mathews developed a new “dual-cam” system that basically eliminated many of the unwanted flaws associated with such a design. As a result, the new Advanced Vectoring System (AVS) was born and a new era of Mathews innovation had begun.

This new system allows more control over the draw force profile of the bow than has ever been possible in years past. The new AVS system allowed engineers to dynamically move the force vector of the anchored cable from one side of the cam axle to the complete other side of the axle.  This allows for a quicker “build rate” on the front side of the draw force curve and increases the amount of stored energy.  In addition, the new AVS system allows the anchored end of the buss cable to pass through the center of the axle to the other side. By doing so, Mathews engineers discovered that they could completely control cam balance to achieve any desired amount of let-off.  This not only gave them the ability to optimize draw force profiles for energy storage, it also allowed them to maximum bow performance and efficiency.

The result of the AVS system is that Mathews is capable of building the fastest, most efficient, and highest performing dual-cam bows in the industry.


The bowstring has two purposes. First, it is used to transfer energy from the shooters arms and back muscles directly to the limbs of the bow. This allows the bow to be “drawn” and thus store energy. Second, it is used as a catalyst to transfer that energy from the limbs to the arrow. This transfer of energy is what gives the arrow speed and direction. The most important feature of the string is its ability to do this repeatedly with a very high degree of consistency. Otherwise, it quickly becomes a hindrance to bow performance. And, while one may assume that a bowstring is a bowstring, a closer look will reveal the exact opposite. In fact, a quality bowstring, like those made by Mathews, can actually make your bow perform at a higher level than with typical strings.

The Genuine Mathews Zebra Bowstring is a great example. What makes the Zebra string so special? Well, it has everything to do with patented Z-S Counter-Twist Technology. On the Zebra Z-S bowstring, the strands in the Z bundle are twisted counter-clockwise while the strands in the S bundle are twisted clockwise. Then, the two opposing bundles are twisted together. The result of this technology is that when the bow is draw, twist bias in the string is eliminated and therefore pulls back straight. This virtually eliminates peep sight rotation.

Genuine Mathews Zebra Bowstrings not only utilizes the patented Z-S Twist technology, but requires extensive and unique pre-stretching processes prior to being installed to all Mathews’ models. This eliminates creep before the string is even placed on a bow. And, while most bow hunters must sacrifice string stretch for speed, Mathews’ owners are never forced to compromise between the two.  All Mathews’ bows are equipped with the best bowstrings in the industry that are specifically designed around each Mathews bow. Only Genuine Mathews Bowstrings, made from the fastest, stretch-resistant materials available, can guarantee optimum speed from your Mathews bow.


The cables are attached to the bowstring and basically work with the cams during the draw process and the release of the bow string. In order to prevent the cables from interfering with the arrow and/or arrow fletching during the shot, the cables are moved to the side (away from the arrows flight path) using a Cable Rod, or Cable Guard. The Cable Rod extends reward (from the bow riser) toward the bowstring. The cables are then attached to a Cable Slide that is attached to the Cable Rod. As the bow is drawn, the cables slide along the rod and out of the arrows path.

While this method is effective, it does rob the bow of smoothness during the draw cycle. In order to eliminate this problem, Mathews introduced the angled Roller Guard system in 2002. This clever design replaced the standard Cable Rod and friction inducing Cable Slide with a wheel system that instantly made bows smoother and easier to draw. In addition, the Roller Guard also made Mathews bows much more efficient.

Furthermore and in 2010, The Reverse Assist™ Roller Guard was born and reduced friction even more for a smoother draw cycle by positioning cables in a reverse manner; in front rather than behind the roller guard.  Traditional roller guards position cables on the back side of the roller guard and cause the cables to wrap tighter as the bow is drawn back and therefore places more pressure on the cables.  The Reverse Assist™ Roller Guard allows the cable to roll with less tension in a fully contained roller guard and ultimately makes the bow smoother since there is less tension on the cable.


The purpose of center serving (material wrapped around the bowstring) is to protect the central area of the bowstring from the wear and tear that typically results from attaching the arrow. Serving Material is also wrapped around the bow string for added protection in other areas such as where the string contacts and rolls over the cam and idler wheel.

Basic Shooting Form

When it comes to shooting a bow accurately; one must pay particular attention to shooting form and procedure. This can only be accomplished after the correct draw length has been established. After that has been done, the shooter can then move onto draw weight selection and the basics of shooting.

The most important thing to consider when contemplating draw weight is that muscles that are warm and loose (such as during summertime practice) can often manage a heavier drawing weight than muscles that have become cold and stiff after sitting motionless in a frigid treestand for hours on end. Therefore, consider the climate and conditions in which you plan to hunt before making a decision about maximum draw weight for your bow. In most cases, a reduction of a few pounds can make a big difference in drawing the bow smoothly; especially while wearing heavy, bulky clothing.

To shoot a bow accurately, it is important to understand that it begins with consistency. Meaning, that unless the shooter’s grip (how they hold the bow) and anchor point (position of release hand in conjunction with face) are the same for every shot, consistency will not be found and shooting accuracy will suffer.

When gripping a bow, be sure to place the bow grip in the center-line of the hand where the large bones of the forearm butt up against the smaller bones of the wrist. This will provide the most stable, torque-free platform from which to shoot. The bow hand should also remain relaxed (with fingers hanging loosely) throughout the shot process.

The anchor point should also be given special attention. This is merely the location that your release hand touches your face while you are at full-draw. In order to maintain consistency, try to establish your anchor point on a solid, non-shifting portion of the face such as the jaw bone and string touching the tip of the nose. Once you find a suitable location, strive to find it every time you come to full-draw. This can be as basic as a knuckle tucked in close to the jawbone.

When aiming, try not to “punch” or “jerk” the release trigger the moment the sight pin covers the target. Instead, let the sight pin float around the target while simultaneously squeezing the release trigger. In order to maximize shooting accuracy the bow should fire unexpectedly.